1、根据测量对象与测量环境确定传感器的类型,按照美国的标准

发布时间:15-05-15 16:59分类:技术文章 标签:PM2.5
中国的PM2.5标准和其他*的差别
中国的PM2.5标准拟于2016年生效,虽然比美国落后了一二十年,但和欧盟的2015年生效相比,也不算太晚。如果仅从标准的数值来看,中国即将发布的新标准已经与WHO过渡期目标-1一致,虽然落后于发达*,但也算是开始了三步走的*步。然而,即使标准值相同,而评判是否达标的方式不同,约束力是有极大差异的。举个例子,中国现行的空气质量标准制定于1996年,其中PM10的日均标准为150微克/立方米,表面上已和美国现行标准一样严格。但是,按照美国的标准,平均每年*多只能有1天超标,否则*算不达标,超标地区需要提交改进方案并加以实施。而在中国的标准文件中,没有类似的规定。各地区在执行标准时,只是计算每年的“达标天数”和“达标率”。PM10的标准至今已经执行了15年,一个86.2%的达标率还可以作为正面消息报道。
在即将发布的PM2.5新标准中,依然没有规定多高的达标率才是可接受的。WHO和其他*是怎么规定的呢?WHO要求每年*多有3天超标(99%的达标率),澳大利亚*多5天,而美国和日本要求的达标率为98%。
如何测定PM2.5?
空气中漂浮着各种大小的颗粒物,PM2.5是其中较细小的那部分。不难想到,测定PM2.5的浓度需要分两步走:(1)把PM2.5与较大的颗粒物分离;(2)测定分离出来的PM2.5的重量。目前,各国环保部门广泛采用的PM2.5测定方法有三种:重量法、β射线吸收法和微量振荡天平法。这三种方法的*步是一样的,区别在于第二步。将PM2.5直接截留到滤膜上,然后用天平称重,这*是重量法。值得一提的是,滤膜并不能把所有的PM2.5都收集到,一些极细小的颗粒还是能穿过滤膜。只要滤膜对于0.3微米以上的颗粒有大于99%的截留效率,*算是合格的。损失部分极细小的颗粒物对结果影响并不大,因为那部分颗粒对PM2.5的重量贡献很小。重量法是*直接、*可靠的方法,是验证其它方法是否准确的标杆。然而重量法需人工称重,程序繁琐费时。如果要实现自动监测,*需要用到另外两种方法。
β射线吸收法:将PM2.5收集到滤纸上,然后照射一束β射线,射线穿过滤纸和颗粒物时由于被散射而衰减,衰减的程度和PM2.5的重量成正比。根据射线的衰减*可以计算出PM2.5的重量。
微量振荡天平法:一头粗一头细的空心玻璃管,粗头固定,细头装有滤芯。空气从粗头进,细头出,PM2.5*被截留在滤芯上。在电场的作用下,细头以一定频率振荡,该频率和细头重量的平方根成反比。于是,根据振荡频率的变化,*可以算出收集到的PM2.5的重量。
将PM2.5分离出来的切割器又是怎么工作的呢?在抽气泵的作用下,空气以一定的流速流过切割器时,那些较大的颗粒因为惯性大,一头撞在涂了油的部件上而被截留,惯性较小的PM2.5则能绝大部分随着空气顺利通过。也许你已经觉察到,这和发生在我们呼吸道里的情形是非常相似的:大颗粒易被鼻腔、咽喉、气管截留,而细颗粒则更容易到达肺的深处,从而产生更大的健康风险。
对于PM2.5的切割器来说,2.5微米是一个踩在边线上的尺寸。直径恰好为2.5微米的颗粒有50%的概率能通过切割器。大于2.5微米的颗粒并非全被截留,而小于2.5微米的颗粒也不是全都能通过。例如,按照《环境空气PM10和PM2.5的测定重量法》的要求,3.0微米以上颗粒的通过率需小于16%,而2.1微米以下颗粒的通过率要大于84%。
特殊的结构加上特定的空气流速共同决定了切割器对颗粒物的分离效果,这两者稍有变化,*会对测定产生很大影响,而使结果失去可比性。因此,美国环保局在1997年制定上*个PM2.5标准的时候,一并规定了切割器的具体结构。于是,虽然PM2.5的测定仪器有不少品牌,它们外观却极为相似。
市面上有些手机大小的仪器号称可以测定PM2.5,科学吗?
市面上的非仪器利用光散射的原理测定颗粒物浓度,这种方法并没有被各国环保部门采纳为标准方法,但是有依据此原理制成的仪器,在科研中也有运用。空气中的颗粒物浓度越高,对光的散射*越强。光的散射相对容易测,把它测出来,理论上*可以算出颗粒物浓度了。但在实际运用中,事情并没有这么简单。光的散射与颗粒物浓度之间的关系是很不确定的,受到诸多因素的影响,例如颗粒物的化学组成、形状、比重、粒径分布,而这些都取决于污染源的组成。这意味着光散射和颗粒物浓度之间的换算公式随时随地都可能在变,需要仪器使用者不断地用标准方法进行校正,没有经过科学训练的业余人士不大可能办得到。有研究者做过理论计算:利用光散射仪测定PM2.5,至少有30-40%的不确定性。这种不确定性是这类仪器固有的,质量可靠的仪器尚且如此,更何况市面上仪器的质量并不都是理想的呢。
由于我国未将PM2.5、臭氧等污染物纳入检测体系,常常会出现空气质量指数与公众观感相悖的状况。然而,靠非人员操作非的或质量不高的仪器去监测空气质量,并不能从根本上解决这个问题。更有效的监督手段,也许是呼吁环保部门早日在更多地点监测PM2.5,并让全部数据对民众更为公开、透明。现在新的《环境空气质量标准》正在向公众征求意见,并拟于2016年实施,公众的声音也许能使这一时间大大提前。
霾是PM2.5引起的吗?
虽然肉眼看不见空气中的颗粒物,但是颗粒物却能降低空气的能见度,使蓝天消失,天空变成灰蒙蒙的一片,这种天气*是灰霾天。根据《2010年灰霾试点监测报告》,在灰霾天,PM2.5的浓度明显比平时高,PM2.5的浓度越高,能见度*越低。
虽然空气中不同大小的颗粒物均能降低能见度,不过相比于粗颗粒物,更为细小的PM2.5降低能见度的能力更强。能见度的降低其本质上是可见光的传播受到阻碍。当颗粒物的直径和可见光的波长接近的时候,颗粒对光的散射消光能力*强。可见光的波长在0.4-0.7微米之间,而粒径在这个尺寸附近的颗粒物正是PM2.5的主要组成部分。理论计算的数据也清楚地表明这一点:粗颗粒的消光系数约为0.6平方米/克,而PM2.5的消光系数则要大得多,在1.25-10平方米/克之间,其中PM2.5的主要成分硫酸铵、硝酸铵和有机颗粒物的消光系数都在3左右,是粗颗粒的5倍。所以,PM2.5是灰霾天能见度降低的主要原因。
值得一提的是,灰霾天是颗粒物污染导致的,而雾天则是自然的天气现象,和人为污染没有必然联系。两者的主要区别在于空气湿度,通常在湿度大于90%时称之为雾,而湿度小于80%时称之为霾,湿度在80-90%之间则为雾霾的混合体。

发布时间:15-05-05 16:30分类:技术文章 标签:工业传感器
现代传感器在原理与结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理地选用传感器,是在进行某个量的测量时首*要解决的问题。当传感器确定之后,与之相配套的测量方法和测量设备也*可以确定了。测量结果的成败,在很大程度上取决于传感器的选用是否合理。
1、根据测量对象与测量环境确定传感器的类型
要进行—个具体的测量工作,首*要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。
在考虑上述问题之后*能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。
2、灵敏度的选择
通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽量减少从外界引入的干扰信号。
传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。
3、频率响应特性
传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真。实际上传感器的响应总有—定延迟,希望延迟时间越短越好。
传感器的频率响应越高,可测的信号频率范围*越宽。
在动态测量中,应根据信号的特点(稳态、瞬态、随机等)响应特性,以免产生过大的误差。
4、线性范围
传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首*要看其量程是否满足要求。
但实际上,任何传感器都不能保证*的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。
5、稳定性
传感器使用一段时间后,其性能保持不变的能力称为稳定性。影响传感器长期稳定性的因素除传感器本身结构外,主要是传感器的使用环境。因此,要使传感器具有良好的稳定性,传感器必须要有较强的环境适应能力。
在选择传感器之前,应对其使用环境进行调查,并根据具体的使用环境选择合适的传感器,或采取适当的措施,减小环境的影响。
传感器的稳定性有定量指标,在超过使用期后,在使用前应重新进行标定,以确定传感器的性能是否发生变化。
在某些要求传感器能长期使用而又不能轻易更换或标定的场合,所选用的传感器稳定性要求更严格,要能够经受住长时间的考验。
6、精度
精度是传感器的一个重要的性能指标,它是关系到整个测量系统测量精度的一个重要环节。传感器的精度越高,其价格越昂贵,因此,传感器的精度只要满足整个测量系统的精度要求*可以,不必选得过高。这样*可以在满足同一测量目的的诸多传感器中选择比较便宜和简单的传感器。
如果测量目的是定性分析的,选用重复精度高的传感器即可,不宜选用*量值精度高的;如果是为了定量分析,必须获得精确的测量值,*需选用精度等级能满足要求的传感器。
对某些特殊使用场合,无法选到合适的传感器,则需自行设计制造传感器。自制传感器的性能应满足使用要求。

发布时间:15-05-12 16:31分类:技术文章 标签:防辐射,防辐射材料
中子射线的材料
中子是一种不带电荷的中性粒子,中子通过物质时与原子核外电子几乎不发生作用,主要与核作用。慢中子与物质作用的主要过程是俘获反应。在这一过程中原子核俘获中子后形成复合核,成为放射性核素,释放γ射线。快中子与物质作用主要是弹性和非弹性散射。在弹性散射中同中子碰撞的靶核,其质量与中子接近时,中子能量损失*大,因此人们为了得到慢中子或为了屏蔽中子,常用含氢的物质如水、石蜡、聚乙烯等材料做慢化剂或防护材料。中子与氢、氧、碳、氮等原子核作用能产生反冲核,这种反冲核在组织中能引起高密度的电离。对人体产生的危害比相同剂量的X射线更为严重。研究表明,中子致肿瘤的生物效应(RBE)约为2~3倍于X射线,由中子引起的染色体畸变大大高于X射线和γ射线。
中子和物质的相互作用有两种形式。一是快中子的散射和减速;二是慢中子被吸收后放出共化粒子或γ射线。中子的屏蔽实际上是要将快中子减速和将慢(热)中子吸收。氢元素含量较高的石蜡、聚乙烯和聚丙烯等是优良的快中子慢化材料,而含锂元素的氟化锂、溴化锂、氢氧化锂,含硼元素的氧化硼、硼酸和碳化硼等是优良的慢中子吸收物质。快中子慢化材料和慢中子吸收物质微粉混合后使用可以得到优良的中、低能中子屏蔽性能的新材料。
国外从上世纪70年代中期开始研究纤维状防中子辐射材料方面的技术,日本在此方面所做工作*多。日本研制成的离子交换型防中子辐射纤维是将硼、锂或其它屏蔽物质的离子吸附在纤维上,从而使纤维具有中子辐射屏蔽功能。由于吸附量有限、且洗涤时极易脱落,故屏蔽效果较差。后来日本又对原来的技术进行改进,使离子交换纤维吸附锂或硼的化合物,从而提高了织物中子屏蔽率。在已知的国外各种防中子辐射纤维中,以日本东丽公司的研制水平为*佳。它采用复合纺丝方法制取防中子辐射复合纤维。具体做法为中子吸收物质与高聚物在捏合机上熔融混合后作为芯层组份,以纯高聚物为皮层进行熔融复合纺丝,所得纤维为皮芯结构,经干热或湿热拉伸制得具有一定强度的纤维,但该纤维纺织设备较复杂,投资比较大。
日本*还报道了另一种纤维状中子防护物的制取方法。含有中子吸收物质的高聚物溶液在高压下喷射纺制纤维,提高了防中子辐射纤维的热中子屏蔽率。但该种纤维强度低,断裂伸长较大,不易加工。这种方法制得的纤维由于中子吸收物质暴露在纤维表面,因而在洗涤、受摩擦时极易损失,使中子吸收性能降低。日本还将锂和硼的化合物粉末与聚乙烯树脂共聚后,采用熔融皮芯复合纺丝工艺研制了防中子辐射纤维材料。纤维的强度可达20~30CN/tex,断裂伸长率为21~32%。由于纤维中锂或硼化合物的含量高达纤维重量的30%,因而具有较好的防护中子辐射的效果,可加工成机织物和非织造布,定重为430g/m2的机织物的热中子屏蔽率可达40%,常用于医院放疗室内医生和病人的防护。
我国从上世纪70年代开始防中子高分子材料的研究,到1984年天津纺院研制出4种具有实用价值的防中子辐射板材。我国的防中子辐射纤维早在1987年5月在天津纺院研制成功。该项研究立足国内现有技术水平,尽管采用的方法与国外不同,但对中子射线的屏蔽效果达到和超过了已知的国外同类研制水平,同时该纤维还具有较好的γ射线屏蔽功能,现已研制成无纺布、机织布并已制成防护服装开始使用。
国内采用硼化合物、重金属化合物与聚丙烯等共混后熔纺制成了皮芯型防中子、防X射线纤维。纤维中碳化硼含量高达35%,纤维强度可达23~27CN/tex,断裂伸长率达20~40%,可加工成针织物、机织物和非织造布,用在原子能反应堆周围,可使中子辐射防护屏蔽率达到44%以上。采用聚丙烯与不同重量的碳化硼微粉为原料,探讨了通过熔融共混纺丝工艺研制防中子辐射纤维及织物的可行性,并对共混体系的流变性能及影响流变性能的因素进行了讨论。他们讨论了聚丙烯/碳化硼共混体系中碳化硼粒度、助剂种类和用量、温度等因素对该体系流变性能及可纺性的影响,并对纤维和织物的性能进行了测试,得出如下结果:①在聚丙烯/碳化硼共混体系中,随碳化硼含量的增加,体系的粘度增大,可纺性下降,材料的辐射防护性能提高,随碳化硼粒度的增大,纤维强度下降。综合考虑,碳化硼的添加量为40%;②钛酸酯类助剂可有效改善聚丙烯与碳化硼的相容性,提高碳化硼在聚丙烯中的分散均匀性。碳化硼中的助剂用量*好为115~215%;③温度过高或过低,都对纺丝不利。当剪切速率不变,温度升到250℃以上时,共混体系的扭矩即粘度值则趋于恒定,选此温度为纺丝温度;④通过选用适宜的助纺剂和粒度合适的碳化硼,所得到的芯料共混物可顺利进行复合纺丝。成品复合纤维断裂强度为2106CN/dtex,断裂伸长为37%,热熔温度为163℃,在130℃以下可满足一般使用要求;⑤经测试,复合纤维制成的无纺布对热中子具有较强的屏蔽作用,对中能中子也有一定的屏蔽作用。这类材料适合用于防护衣具、门窗帘和遮盖包装等。
透明防中子辐射材料是近年来研究开发起来的防中子辐射材料又一新品种。它是含硼、锂元素的有机玻璃。这类材料不同于上述的一般由两种或两种以上的化合物混合而成的防辐射材料。它是一种均一的交联(或非交联)非晶化合物,可加工成各种透明视镜和观察窗,使人眼部免受中子辐射损伤。这类材料的研制成功是防中子辐射材料研究史上的一大突破。研究了含铅有机玻璃、含钡有机玻璃、含硼有机玻璃和普通有机玻璃的X、γ射线和中子射线防护性能及其耐60Coγ射线辐照稳定性。结果表明,含铅有机玻璃板材具有良好的X射线、反应堆热柱γ射线屏蔽性能;含硼有机玻璃板材具有良好的热中子屏蔽性能;含钡有机玻璃板材的褪化裂变谱中子辐射屏蔽性能良好;含钡有机玻璃和普通有机玻璃可耐105~106Gy的60Coγ射线辐照;含铅有机玻璃板材耐60Coγ射线照射能力小于105Gy。
防辐射纤维及材料广泛应用于国防和民用等诸多领域。它的研制对于我国的现代化建设具有重要的意义。目前,防辐射纤维及材料正朝着“专门化”(对某一种射线具有特别好的防护能力)和“多功能化”(适用于存在多种射线的场所)方向发展。相信随着各种射线及射线源广泛的应用,防辐射纤维及材料研究和应用的前景将日益广阔。

相关文章